Durante el mes de Enero, desde el lunes 28 hasta el viernes 1 de Febrero, se llevará a cabo el Seminario de Machine Learning. En este se cubrirán muchos de los temas actualmente relevantes en el ámbito profesional y de investigación.

Les dejamos aquí el cronograma:

Día Temas
1 1. Introduction
* History and definition
* Terminology and useful concepts
* Machine Learning Engineer
* Tools for Machine Learning
* Applications and use cases

2. Data Preparation
* Data analysis and preparation
* Pre-processing (cleaning, manual elimination, unbalanced data, dimension reduction, normalization, standardization)
* Data exploration (histogram, box-plot, pie-chart, scatter-plot, heat map)

3. Distance-based methods
* Predictive models
* Distance-based models
* Types of distances (Minkowski, cosine)
* k-Nearest Neighbors
* k-Means Clustering
2 4. Searching-based methods
* Introduction
* Decission Trees
* Random Forests

5. Introduction to Neural Networks
* History and biological inspiration
* Important definitions
* Topology of Neural Networks
* Structure of a Neural Network
* Learning process (problems and solutions)
* Example
3 6. Support Vector Machines
* History and definition
* Linear SVM
* Non-linear SVM
* Kernel types
* One-class SVM
* Advantages and disadvantages

7. Naive Bayes
* Bayes theorem
* Naive Bayes
* Example
* Advantages and disadvantages

8. Probabilistic Graphical Models
* Introduction
* Usability
* Representation
* Random Markov Fields
* Applications
* Example
4 9. Ensemble models
* Homogeneous models (Bagging, Boosting)
* Heterogeneous models (Stack, Cascade)

10. Genetic Algorithms
* Introduction
* Genetic Algorithms
* Example

11. Evaluation
* Error metrics
* Sampling (bootstrap, cross validation, holdout)
* Muticlass classification
* Overfitting vs Underfitting
5 10. Deep learning
* Introduction to Deep Learning
* Convolutional Neural Networks
* Deep Learning Frameworks
* Recurrent Neural Networks

Las charlas están pensadas en cubrir los aspectos básicos de cada tema, por lo que no son necesarios conocimientos previos. Además, se mostrarán ejemplos reales sobre el uso y aplicación de las diferentes técnicas.

Lugar: Auditorio del 4to piso de Informática - UNSAAC

Hora: 5pm a 7pm

Ponentes:

  • PhD. Victor Ayma (PUC-RIO)
  • PhD. Student Grover Castro (IME-USP)
  • PhD. Student Danny Suarez (UFRGS)
  • PhD. Student Rodolfo Quispe (UNICAMP)
  • M.Sc. Jhosimar Arias (UNICAMP)
  • M.Sc. Berthin Torres (UNICAMP)

Nota: Ingreso libre! No es necesario traer portátiles. Se darán certificados digitales.

Material de las charlas (diapositivas + código fuente): https://drive.google.com/drive/folders/1YDxViYU8Y05hqzDv3XznAFvadw-e4vUU?usp=sharing